

# MAY CHEONG TOY PRODUCTS FTY LTD

# **TEST REPORT**

# **SCOPE OF WORK**

RAIDO FREQUENCY AND EMC TESTING-82181/19181

# **REPORT NUMBER**

SZHH01538188-001

**ISSUE DATE** 

11 MARCH 2021

[REVISED DATE]

# **PAGES**

34

# **DOCUMENT CONTROL NUMBER**

ETSI EN300440\_c © 2017 INTERTEK





West Side of 1/F and 3,4,5/F of Bldg. 1, 1-5/F of Bldg. 3, Yuanzheng Science and Technology Industrial Park, No.4012, Wuhe Ave. North, Bantian Street, Longgang District, Shenzhen

Tel: (86 755) 2602 0111 Fax: (86 755) 2683 7118\119 www.intertek.com

Intertek Report No.: SZHH01538188-001

# RADIO COMMUNICATIONS AND EMC TESTING REPORT

MAY CHEONG TOY PRODUCTS FTY LTD

82181/19181

Additional Models: 82180/82182/82184/82185/82186

R/C Work Machines UNIMOG U430 (19CM)

Additional Name: R/C Work Machines MACK Granite Refuse Truck (19CM)

Test Report: SZHH01538188-001

| Test Engineer:       | Terry Tang<br>Assistant Supervisor | Sign On File |
|----------------------|------------------------------------|--------------|
| Report Approved By : | Jimmy Wen<br>Assistant Manager     |              |
| Date :               | 11 March 2021                      |              |

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Version: 01 November 2017 Page 1 of 33 ETSI EN300440\_c



Tel: +86755 2602 0111 Fax: +86755 2683 7118\119 www.intertek.com.cn www.intertek.com





# RADIO PERFORMANCE MEASUREMENTS RESULT SUMMARY

|                                                | ETSI EN                |                    |            |
|------------------------------------------------|------------------------|--------------------|------------|
| Requirements                                   | Technical requirements | Test Specification | Compliance |
|                                                | Clause                 |                    |            |
| Equivalent Isotropically Radiated Power (EIRP) | 4.2.2                  | 4.2.2.3            | Complied   |
| Permitted Range of Operating Frequencies       | 4.2.3                  | 4.2.3.3            | Complied   |
| Unwanted emissions in the spurious domain      | 4.2.4                  | 4.2.4.3            | Complied   |
| Duty Cycle                                     | 4.2.5.4                | 4.2.5.4.3          | Complied   |
| Blocking or desensitization                    | 4.3.4                  | 4.3.4.3            | Complied   |
| Spurious radiation                             | 4.3.5                  | 4.3.5.3            | Complied   |

When determining the test conclusion, the Measurement Uncertainty of test has been considered.



# EMC COMPLIANCE MEASUREMENTS RESULT SUMMARY

| ETSI EN 301 489-3 | ETSI EN 301 489-1 | Compliance |
|-------------------|-------------------|------------|
| Clause I          | Compliance        |            |
| 7.1               | 8.2               | Complied   |
| 7.2               | 9.3               | Complied   |
| 7.2               | 9.2               | Complied   |
|                   | 7.1<br>7.2        | 7.2 9.3    |

When determining the test conclusion, the Measurement Uncertainty of test has been considered.

Version: 01 November 2017 Page 3 of 34 ETSI EN300440\_c



# EQUIPMENT UNDER TEST (EUT) INFORMATION

Applicant: MAY CHEONG TOY PRODUCTS FTY LTD

UNIT 901-2, 9/F., EAST OCEAN CENTRE, 98 GRANVILLE ROAD,

TSIMSHATSUI EAST, KOWLOON, HONG KONG

Description of EUT: R/C Work Machines UNIMOG U430 (19CM)

Type Number (s): 82181/19181

Brand Name(s): N/A

Serial Number (s): Not Labelled

Equipment Received: 19 February 2021

Test Date (s): 19 February 2021 to 11 March 2021

Modulation: GFSK

Categories of Receiver: Category 2

Test Site and Location: Intertek Testing Services Shenzhen Ltd. (CNAS L0327)

1F/2F, Building B, QiaoAn Scientific Technology Park, Shangkeng Community, Guanhu Subdistrict, Longhua District, Shenzhen, P.R.

China.

Test Specification (s): ETSI EN 300 440 V2.1.1 (2017-03)

ETSI EN 301 489-1 V2.2.3 (2019-11) ETSI EN 301 489-3 V2.1.1 (2019-03)



# **CONTENTS**

| EX | (HIBIT 1 GENERAL DESCRIPTION                                          | 6  |
|----|-----------------------------------------------------------------------|----|
| 1  | Introduction                                                          | 7  |
| 2  | Test Specification                                                    | 8  |
| ΕX | CHIBIT 2 TEST RESULT OF RADIO PERFORMANCE MEASUREMENTS                | 10 |
| 3  | Equivalent Isotropically Radiated Power (EIRP) and Spurious Emissions | 11 |
| 4  | Permitted Range of Operating Frequencies                              | 16 |
| 5  | Blocking or desensitization                                           | 18 |
| 6  | Duty Cycle                                                            | 20 |
| ΕX | (HIBIT 3 TEST RESULT OF EMC COMPLIANCE MEASUREMENTS                   | 21 |
| 7  | EMC Emission Test                                                     | 22 |
| 8  | Electrostatic Discharge                                               | 25 |
| 9  | Radio Frequency Electromagnetic Field                                 | 28 |
| E) | KHIBIT 4 PHOTOS OF EUT                                                | 30 |
| 10 | EUT Photos                                                            | 31 |



# **EXHIBIT 1**

# **GENERAL DESCRIPTION**



## 1 INTRODUCTION

Intertek Testing Services Shenzhen Limited (address: 1F/2F, Building B, QiaoAn Scientific Technology Park, ShangKeng Community, GuanHu Subdistrict, LongHua District, ShenZhen. P.R. China, 518110) has tested the MAY CHEONG TOY PRODUCTS FTY LTD 82181/19181 R/C Work Machines UNIMOG U430 (19CM). The sample was tested to the relevant performance specification published by the European Telecommunications Standards Institute. This report contains the results of these tests and is submitted MAY CHEONG TOY PRODUCTS FTY LTD as the final test results.

The equipment under test (EUT) is a R/C Work Machines UNIMOG U430 (19CM) operating at 2.4G Band. The Car Unit is powered by DC 3.0V (2 x 1.5V AA batteries). For more detail information pls. refer to the user manual.

The Models: 82180/82182/82184/82185/82186 are the same as the Model: 82181/19181 in hardware and electrical aspect. The difference in appearance and model number serves as marketing strategy.

The production units are required to conform to the initial sample as received when the units are placed on the market.

Version: 01 November 2017 Page 7 of 34 ETSI EN300440\_c



# **2 TEST SPECIFICATION**

# 2.1 RELEVANT PERFORMANCE SPECIFICATION

The relevant performance specifications for 82181/19181 R/C Work Machines UNIMOG U430 (19CM) are the harmonised standard is ETSI EN 300 440 V2.1.1 (2017-03) and the technical standards are ETSI EN 301 489-3 V2.1.1 (2019-03) and ETSI EN 301 489-1 V2.2.3 (2019-11)

The tests performed are those required to demonstrate compliance with the technical specifications and the essential requirements of Article 3.1(b) and 3.2 of the Radio Equipment Directive (2014/53/EU) - RED for regulatory purposes.

# 2.2 TEST ENVIRONMENT

The tests were performed in the Radio communications and Electromagnetic Compatibility Test Facility at Intertek Testing Services Shenzhen Ltd. (CNAS L0327). The sample was subjected to the ambient conditions in the laboratory and indoor test site except during tests at extremes of temperatures and the Radiated Emissions Tests. The temperature and relative humidity recorded during the period of each test are given in the results.

### 2.3 CONFIGURATION OF TEST SAMPLE

The test samples consisted of one transceiver (Car Unit).

#### 2.4 TEST POWER SOURCES

The Car Unit is powered by DC 3.0V (2 x 1.5V AA batteries). The test power source voltages declared by the manufacturer were:

Car Unit
Nominal test voltage
DC 3.0V
Lower extreme test voltage
Upper extreme test voltage
DC 3.0V

Version: 01 November 2017 Page 8 of 34 ETSI EN300440\_c



## 2.5 TEST FREQUENCIES

The sample supplied operated nominally at 2410- 2475MHz for transmitter and the channel list with 1 MHz channel spacing. The tests were carried out on channel Low, Medium and High of the alignment range.

# 2.6 GENERAL REQUIREMENTS

#### 2.6.1 MODULATION

- 1. Modulation is used with GFSK technique.
- 2. Manufacturer's declared operating temperature: -20°C to +55°C.

## 2.6.2 ANTENNA

The antenna used in transceiver is permanent Integrate antenna.

# 2.7 MEASUREMENT UNCERTAINTY

All measurement uncertainties stated in this report are estimated to a 95% confidence level.

# 2.8 SUPPORT EQUIPMENT – RADIO PERFORMANCE MEASUREMENTS

N/A

#### 2.9 SUPPORT EQUIPMENT – EMC COMPLIANCE MEASUREMENTS

Controller(Model: 19181) (Provided by Applicant)

#### 2.10 PERFORMANCE CRITERIA

# 2.10.1 GENERAL PERFORMANCE CRITERIA:

| Criterion | During test                | After test                                  |
|-----------|----------------------------|---------------------------------------------|
|           |                            | Operate as intended                         |
|           | Operate as intended        | No loss of function                         |
| Α         | No loss of function        | No degradation of performance               |
|           | No unintentional responses | No loss of stored data or user programmable |
|           |                            | functions                                   |
|           |                            | Operate as intended                         |
|           | May about loss of function | Lost function(s) shall be self-recoverable  |
| В         | May show loss of function  | No degradation of performance               |
|           | No unintentional responses | No loss of stored data or user programmable |
|           |                            | functions                                   |

#### 2.10.2 PERFORMANCE CRITERIA FOR CONTINUOUS PHENOMENA

Performance criterion A applies for immunity tests with phenomena of a continuous nature.

# 2.10.3 PERFORMANCE CRITERIA FOR TRANSIENT PHENOMENA

Performance criterion B applies for immunity tests with phenomena of a transient nature.



# **EXHIBIT 2**

# TEST RESULT OF RADIO PERFORMANCE MEASUREMENTS

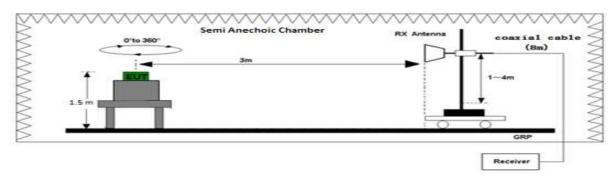
Version: 01 November 2017 Page 10 of 34 ETSI EN300440\_c

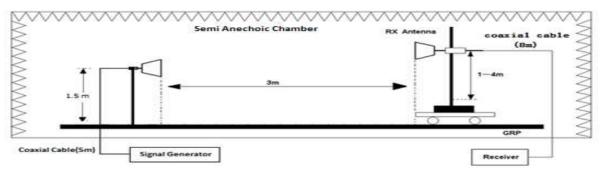


# 3 EQUIVALENT ISOTROPICALLY RADIATED POWER (EIRP) AND SPURIOUS EMISSIONS

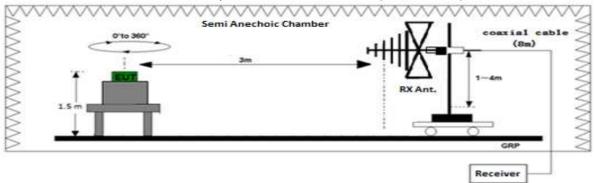
# 3.1 TEST METHOD AND SUMMARY

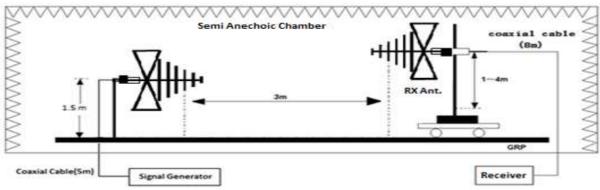
|                 | Equivalent Isotropically Radiated Power (EIRP)    | Unwanted emissions in the spurious domain | Spurious radiations |
|-----------------|---------------------------------------------------|-------------------------------------------|---------------------|
| Basic Standard: | ETSI EN 300 440 V2.1.1 (2017-                     | 03)                                       |                     |
| Clause :        | 4.2.2                                             | 4.2.4                                     | 4.3.5               |
| Application:    | Transmitter with an Integral or Dedicated Antenna | All Transmitters                          | All Receivers       |


# 3.2 EQUIPMENT LIST


| Equip No. | Description                    | Manufacturer | Model No.     | Cal. Date   | Due Date    |
|-----------|--------------------------------|--------------|---------------|-------------|-------------|
| SZ061-12  | BiConiLog Antenna              | ETS          | 3142E         | 14-Sep-2018 | 14-Sep-2021 |
| SZ016-12  | Temperature & Humidity Chamber | Terchy       | MHK-120NK     | 12-Jan-2021 | 12-Jan-2022 |
| SZ185-01  | EMI Receiver                   | R&S          | ESCI          | 22-Dec-2020 | 22-Dec-2021 |
| SZ188-01  | Anechoic Chamber               | ETS          | RFD-F/A-100   | 15-Dec-2018 | 15-Dec-2021 |
| SZ056-03  | Spectrum Analyzer              | R&S          | FSP30         | 27-May-2020 | 27-May-2021 |
| SZ006-05  | DC Power Source                | APC          | GPS-3030DD    | 12-Feb-2021 | 12-Aug-2022 |
| SZ062-12  | RF Cable                       | RADIALL      | RG 213U       | 24-Feb-2021 | 24-Aug-2021 |
| SZ062-13  | RF Cable                       | Habia        | 0.026-26.5GHz | 24-Feb-2021 | 24-Aug-2021 |

Version: 01 November 2017 Page 11 of 34 ETSI EN300440\_c





# 3.3 Test Setup





Test set-up of radiated disturbance (above 1GHz)





Test set-up of radiated disturbance (30MHz-1GHz)



# 3.4 TEST RESULT - EQUIVALENT ISOTROPICALLY RADIATED POWER (EIRP)

Ambient Test Conditions: Temperature 25°C; Humidity 50%

(Car Unit)

|                             | Test Conditions    |          |               | Power | Limit | Margin |
|-----------------------------|--------------------|----------|---------------|-------|-------|--------|
| Temperature(°C) Humidity(%) | Voltage            | CH(MHz)  | Power<br>(mW) | (dBm) | (dBm) | (dB)   |
| Ambient                     | □ VDC nom DC 3.0V  |          | 0.468         | -3.3  | 10.0  | -13.3  |
| T <sub>min</sub> -20°C      | □ VDC max DC 3.0V  |          | 0.437         | -3.6  | 10.0  | -13.6  |
| H <sub>min</sub> 0%         | □ VDC min DC 2.55V | 2410.000 | 0.417         | -3.8  | 10.0  | -13.8  |
| T <sub>max</sub> 55°C       | □ VDC max DC 3.0V  |          | 0.427         | -3.7  | 10.0  | -13.7  |
| H <sub>max</sub> 50%        | □ VDC min DC 2.55V |          | 0.407         | -3.9  | 10.0  | -13.9  |
| Ambient                     | □ VDC nom DC 3.0V  |          | 0.537         | -2.7  | 10.0  | -12.7  |
| T <sub>min</sub> -20°C      | □ VDC max DC 3.0V  |          | 0.525         | -2.8  | 10.0  | -12.8  |
| H <sub>min</sub> 0%         |                    | 2440.000 | 0.513         | -2.9  | 10.0  | -12.9  |
| T <sub>max</sub> 55°C       | □ VDC max DC 3.0V  |          | 0.479         | -3.2  | 10.0  | -13.2  |
| H <sub>max</sub> 50%        | □ VDC min DC 2.55V |          | 0.468         | -3.3  | 10.0  | -13.3  |
| Ambient                     | □ VDC nom DC 3.0V  |          | 0.562         | -2.5  | 10.0  | -12.5  |
| T <sub>min</sub> -20°C      | □ VDC max DC 3.0V  |          | 0.513         | -2.9  | 10.0  | -12.9  |
| H <sub>min</sub> 0%         | □ VDC min DC 2.55V | 2475.000 | 0.550         | -2.6  | 10.0  | -12.6  |
| T <sub>max</sub> 55°C       | □ VDC max DC 3.0V  |          | 0.525         | -2.8  | 10.0  | -12.8  |
| H <sub>max</sub> 50%        | □ VDC min DC 2.55V |          | 0.537         | -2.7  | 10.0  | -12.7  |

# Notes:

- 1. Negative sign (-) in the margin column signify levels below the limit.
- 2. 10 dBm corresponds to 10 mW.
- 3. Measurement Uncertainty: ±4.8dB.

Version: 01 November 2017 Page 13 of 34 ETSI EN300440\_c



# 3.5 RESULTS OF TRANSMITTER TESTS - SPURIOUS EMISSIONS

# 3.5.1 CONDUCTED

Not applicable. Equipment has integral antenna.

# 3.5.2 RADIATED

# 3.5.2.1 SPURIOUS EMISSIONS - OPERATING

Test Conditions: Temperature 25°C; Humidity 50%

(Car Unit)

| 7 |                    |                      |                |                |
|---|--------------------|----------------------|----------------|----------------|
|   |                    | Chani                | nel: Low       |                |
|   | Frequency<br>(MHz) | Measured Power (dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|   | 4820.000           | -36.7                | -30.0          | -6.7           |

|                    | Channe                  | el: Medium     |                |
|--------------------|-------------------------|----------------|----------------|
| Frequency<br>(MHz) | Measured Power<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 4880.000           | -36.8                   | -30.0          | -6.8           |

|                    | Chanr                   | nel: High      |                |
|--------------------|-------------------------|----------------|----------------|
| Frequency<br>(MHz) | Measured Power<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 4950.000           | -36.9                   | -30.0          | -6.9           |

# Notes:

- 1. Negative sign (-) in the margin column signify levels below the limit.
- 2. Other emissions found were at least 10 dB below the limit.
- 3. -30 dBm corresponds to 1  $\mu$ W.
- 4. Measurement Uncertainty: ±4.8dB.

# 3.5.2.2 SPURIOUS EMISSIONS - STANDBY

There were no emissions found above system measuring level (at least 10 dB below the limit).

Version: 01 November 2017 Page 14 of 34 ETSI EN300440\_c



# 3.6 RESULTS OF RECEIVER TESTS - SPURIOUS EMISSIONS

# 3.6.1 CONDUCTED

Not applicable. Equipment has integral antenna.

# 3.6.2 RADIATED

# 3.6.2.1 SPURIOUS EMISSIONS - OPERATING

There were no emissions found above system measuring level (at least 10 dB below the limit).

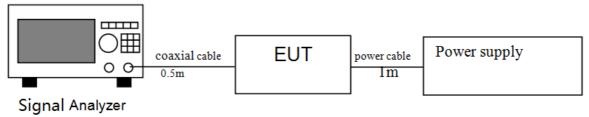
# 3.6.2.2 SPURIOUS EMISSIONS - STANDBY

There were no emissions found above system measuring level (at least 10 dB below the limit).

Version: 01 November 2017 Page 15 of 34 ETSI EN300440\_c



# 4 PERMITTED RANGE OF OPERATING FREQUENCIES


# 4.1 TEST METHOD AND SUMMARY

| Basic Standard : | ETSI EN 300 440 V2.1.1 (2017-03) |
|------------------|----------------------------------|
| Clause :         | 4.2.3                            |
| Application :    | All Transmitters                 |

# 4.2 EQUIPMENT LIST

| Equip No. | Description                    | Manufacturer     | Model No.  | Cal. Date   | Due Date    |
|-----------|--------------------------------|------------------|------------|-------------|-------------|
| SZ056-03  | Spectrum Analyzer              | R&S              | FSP30      | 27-May-2020 | 27-May-2021 |
| SZ016-12  | Temperature & Humidity Chamber | Terchy           | MHK-120NK  | 12-Jan-2021 | 12-Jan-2022 |
| SZ006-05  | DC Power Source                | APC              | GPS-3030DD | 12-Feb-2021 | 12-Aug-2022 |
| SZ062-16  | RF cable                       | HUBER+SUH<br>NER | CBL2-BN-1m | 13-Nov-2020 | 13-Nov-2021 |

# 4.3 Test Setup



# 4.4 TEST RESULT - DC TEST VOLTAGE

# (Car Unit)

|                               | Test Conditions      | Frequency Range (GHz) |          |          |
|-------------------------------|----------------------|-----------------------|----------|----------|
| Temperature (°C) Humidity (%) | Voltage              | СН                    | FL       | Fн       |
| Ambient                       | □ VDC nom DC 3.0V    |                       | 2.408965 | 2.476201 |
| T <sub>min</sub> -20°C        | □ VDC max DC 3.0V    |                       | 2.408923 | 2.476352 |
| H <sub>min</sub> 0%           | □ VDC min DC 2.55V   | Low, High             | 2.408782 | 2.476298 |
| T <sub>max</sub> 55°C         | □ VDC max DC 3.0V    |                       | 2.408987 | 2.476223 |
| H <sub>max</sub> 50%          | □ VDC min DC 2.55V   |                       | 2.408942 | 2.476311 |
| Mea                           | surement Uncertainty | ± 24                  | 40Hz     |          |

Version: 01 November 2017 Page 16 of 34 ETSI EN300440\_c



# 4.5 BAND EDGE WORSE RESULT

(Car Unit)

|                        |                 | Frequency (GHz) | Within Assigned Frequency Band |
|------------------------|-----------------|-----------------|--------------------------------|
| Lowest F <sub>L</sub>  | F <sub>LB</sub> | 2.408782        | Complied                       |
| Highest F <sub>H</sub> | F <sub>нв</sub> | 2.476352        | Complied                       |

where

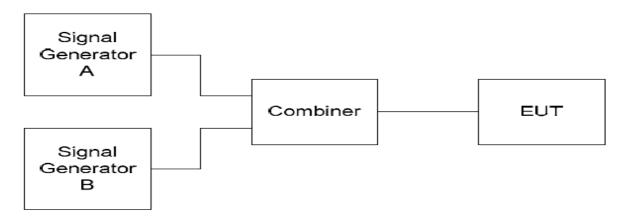
F<sub>LB</sub> Lowest frequency at appropriate spurious emission level Highest frequency at appropriate spurious emission level

The permitted range of modulation bandwidth must be within the limits of the assigned frequency band 2.4-2.4835 GHz.

Version: 01 November 2017 Page 17 of 34 ETSI EN300440\_c



# 5 BLOCING OR DESENSITIZATION


# 5.1 TEST METHOD AND SUMMARY

| Basic Standard : | ETSI EN 300 440 V2.1.1 (2017-03) |
|------------------|----------------------------------|
| Clause :         | 4.3.4                            |
| Test method      | Conducted measurements           |

# 5.2 EQUIPMENT LIST

| Equip No. | Description                    | Manufacturer  | Model No.   | Cal. Date   | Due Date    |
|-----------|--------------------------------|---------------|-------------|-------------|-------------|
| SZ056-07  | Signal Analyzer                | R&S           | FSV40       | 27-Oct-2020 | 27-Oct-2021 |
| SZ180-13  | MXG Vector Signal<br>Generator | Keysight      | N5182B      | 27-Oct-2020 | 27-Oct-2021 |
| SZ180-15  | Signal Generator               | R&S           | SMB100A     | 27-Oct-2020 | 27-Oct-2021 |
| SZ070-21  | Combiner                       | Mini-Circuits | ZN2PD-63-S+ | 27-May-2020 | 27-May-2021 |
| SZ070-04  | Directional Coupler            | Agilent       | 86205A      | 22-Dec-2020 | 22-Dec-2021 |
| SZ070-18  | Attenuator                     | Agilent       | 8494B       | 22-Dec-2020 | 22-Dec-2021 |
| SZ070-19  | Attenuator                     | Agilent       | 8495B       | 22-Dec-2020 | 22-Dec-2021 |
| SZ068-03  | RF Shielding<br>Cover          | Changruixing  | 50×50×60cm  | 24-Feb-2021 | 24-Aug-2020 |

# 5.3 Test Setup



Version: 01 November 2017 Page 18 of 34 ETSI EN300440\_c



#### 5.4 TEST RESULT - DC TEST VOLTAGE

| The minimum level of<br>Wanted signal from<br>companion device<br>(dBm) (Pmin+3dB) | Blocking signal frequency<br>(MHz) |               | Blocking<br>signal power<br>(dBm) | Limit<br>(-45 dBm + k) | Result |
|------------------------------------------------------------------------------------|------------------------------------|---------------|-----------------------------------|------------------------|--------|
| -40.0+3                                                                            | ±10*BW                             | Lower: 2397.4 | -32.0                             | -53.4                  | Pass   |
| -40.0+3                                                                            | ±10.844                            | Upper: 2422.6 | -34.0                             | -53.4                  | Pass   |
| -40.0+3                                                                            | +00*D\\/                           | Lower: 2385.4 | -28.0                             | -53.4                  | Pass   |
| -40.0+3                                                                            | ±20*BW                             | Upper: 2434.6 | -26.0                             | -53.4                  | Pass   |
| -40.0+3                                                                            | ±50*BW                             | Lower: 2349.4 | -21.0                             | -53.4                  | Pass   |
| -40.0+3                                                                            |                                    | Upper: 2470.6 | -20.0                             | -53.4                  | Pass   |

# Notes:

- When adjusts the level for the wanted signal at the input of the UUT to -40.0dBm, the UUT still gives sufficient response. And when below the level -40.0dBm, the UUT couldn't give sufficient response.
- 2. The receive channel bandwidth (BW) is 1.2MHz, which is declared by manufacturer.
- 3. The nominal frequency of the receiver f during test is 2410MHz.
- 4. The correction factor  $k = -20\log f 10\log BW$ . Where f is the frequency in GHz and BW is the channel bandwidth in MHz. As the f is 2410MHz and BW is 1.2MHz, the correction factor k is -8.4dB.

Version: 01 November 2017 Page 19 of 34 ETSI EN300440\_c



# **6 DUTY CYCLE**

# 6.1 TEST METHOD AND SUMMARY

| Basic Standard : | d: ETSI EN 300 440 V2.1.1 (2017-03) |  |
|------------------|-------------------------------------|--|
| Clause :         | 4.2.5                               |  |
| Test method      | Conducted measurements              |  |

# 6.2 EQUIPMENT LIST

| Equip No. | Description                 | Description Manufacturer Model No. |            | Cal. Date   | Due Date    |
|-----------|-----------------------------|------------------------------------|------------|-------------|-------------|
| SZ056-03  | Spectrum Analyzer R&S FSP30 |                                    | FSP30      | 27-May-2020 | 27-May-2021 |
| SZ062-16  | RF cable                    | HUBER+SUH<br>NER                   | CBL2-BN-1m | 13-Nov-2020 | 13-Nov-2021 |

# 6.3 Limits

No Restriction

# 6.4 Test Result

# (Car Unit)

| Frequency<br>(MHz) | Duty Cycle |
|--------------------|------------|
| 2410               | 16.3%      |

Version: 01 November 2017 Page 20 of 34 ETSI EN300440\_c



# **EXHIBIT 3**

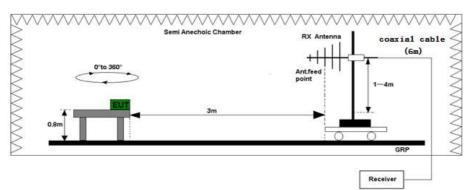
# TEST RESULT OF EMC COMPLIANCE MEASUREMENTS

Version: 01 November 2017 Page 21 of 34 ETSI EN300440\_c

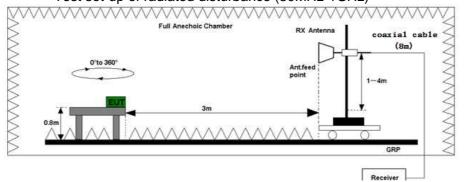


# 7 EMC EMISSION TEST

# 7.1 TEST METHOD AND SUMMARY


| Basic Standard : | EN55032                               |
|------------------|---------------------------------------|
| Test:            | Radiated Emission                     |
| Classification:  | Class B                               |
| Port :           | Enclosure Port of Ancillary Equipment |

## 7.2 RADIATED EMISSION TEST


# 7.2.1 TEST EQUIPMENT

| Equip No. | Description       | Manufacturer | Model No.     | Cal. Date   | Due Date    |
|-----------|-------------------|--------------|---------------|-------------|-------------|
| SZ061-12  | BiConiLog Antenna | ETS          | 3142E         | 14-Sep-2018 | 14-Sep-2021 |
| SZ185-01  | EMI Receiver      | R&S          | ESCI          | 22-Dec-2020 | 22-Dec-2021 |
| SZ188-01  | Anechoic Chamber  | ETS          | RFD-F/A-100   | 15-Dec-2018 | 15-Dec-2021 |
| SZ056-03  | Spectrum Analyzer | R&S          | FSP30         | 27-May-2020 | 27-May-2021 |
| SZ062-12  | RF Cable          | RADIALL      | RG 213U       | 24-Feb-2021 | 24-Aug-2021 |
| SZ062-13  | RF Cable          | Habia        | 0.026-26.5GHz | 24-Feb-2021 | 24-Aug-2021 |

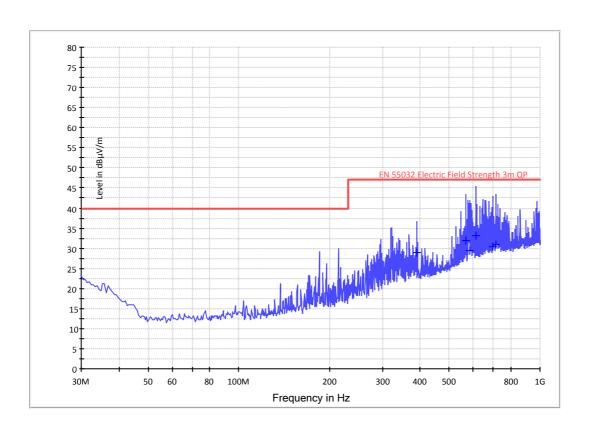
# 7.2.2 TEST SETUP



Test set-up of radiated disturbance (30MHz-1GHz)



Test set-up of radiated disturbance (above 1GHz)


Version: 01 November 2017 Page 22 of 34 ETSI EN300440\_c



# 7.2.3 TEST RESULT

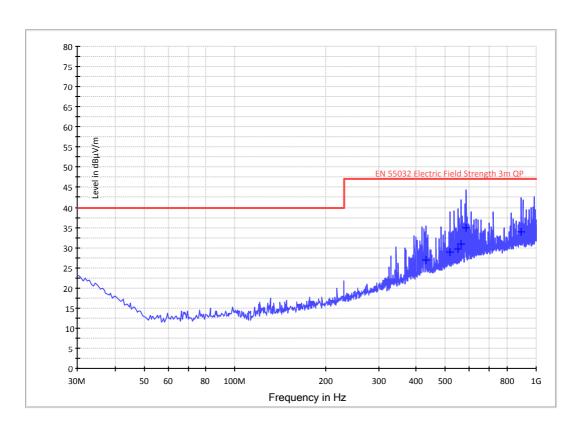
Worst-case Operating Mode: Link & Running (Motor)

# Horizontal



# **Limit and Margin**

|            | 0         |        |           |              |       |          |             |
|------------|-----------|--------|-----------|--------------|-------|----------|-------------|
| Frequency  | QuasiPeak | Meas.  | Bandwidth | Polarization | Corr. | Margin - | Limit - QPK |
| (MHz)      | (dBµV/m)  | Time   | (kHz)     |              | (dB)  | QPK      | (dBµV/m)    |
|            |           | (ms)   |           |              |       | (dB)     |             |
| 390.840000 | 28.9      | 1000.0 | 120.000   | Н            | 18.8  | 17.1     | 47.0        |
| 568.350000 | 31.8      | 1000.0 | 120.000   | Н            | 22.7  | 15.2     | 47.0        |
| 584.355000 | 29.4      | 1000.0 | 120.000   | Н            | 23.0  | 17.6     | 47.0        |
| 613.940000 | 33.3      | 1000.0 | 120.000   | Н            | 23.6  | 13.7     | 47.0        |
| 695.905000 | 30.5      | 1000.0 | 120.000   | Н            | 25.5  | 16.5     | 47.0        |
| 714.820000 | 30.9      | 1000.0 | 120.000   | Н            | 25.6  | 16.1     | 47.0        |
|            |           |        |           |              |       |          |             |


No emissions significantly above equipment noise floor.

# Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dB $\mu$ V/m)= Corr. (dB/m)+ Read Level (dB $\mu$ V)
- 3. Margin (dB) = Limit QP(dB $\mu$ V/m) QP(dB $\mu$ V/m)
- 4. The emissions were very low against the limit in the frequency range 1 GHz ~ 6GHz.



# **Vertical**



# **Limit and Margin**

| Frequency  | QuasiPeak | Meas.  | Bandwidth | Polarization | Corr. | Margin - | Limit - QPK |
|------------|-----------|--------|-----------|--------------|-------|----------|-------------|
| (MHz)      | (dBµV/m)  | Time   | (kHz)     |              | (dB)  | QPK      | (dBµV/m)    |
|            |           | (ms)   |           |              |       | (dB)     |             |
| 429.640000 | 26.9      | 1000.0 | 120.000   | ٧            | 19.7  | 20.1     | 47.0        |
| 518.880000 | 28.9      | 1000.0 | 120.000   | V            | 21.8  | 18.1     | 47.0        |
| 550.890000 | 29.6      | 1000.0 | 120.000   | V            | 22.4  | 17.4     | 47.0        |
| 564.470000 | 31.0      | 1000.0 | 120.000   | V            | 22.7  | 16.0     | 47.0        |
| 587.265000 | 34.9      | 1000.0 | 120.000   | V            | 23.1  | 12.1     | 47.0        |
| 893.785000 | 34.0      | 1000.0 | 120.000   | V            | 27.1  | 13.0     | 47.0        |

No emissions significantly above equipment noise floor.

#### \_\_ Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Limit QP(dB $\mu$ V/m) QP(dB $\mu$ V/m)
- 4. The emissions were very low against the limit in the frequency range 1 GHz  $^{\sim}$  6GHz.

## Notes:

- 1. Quasi-Peak Detector used up to 1G, Peak and Average Detector used above 1G
- 2. Frequency range scanned: 30 MHz to 6000 MHz
- 3. Only emissions significantly above equipment noise floor are reported
- 4. Measurement Uncertainty: ±4.8dB.

# 7.2.4 MEASUREMENT UNCERTAINTY

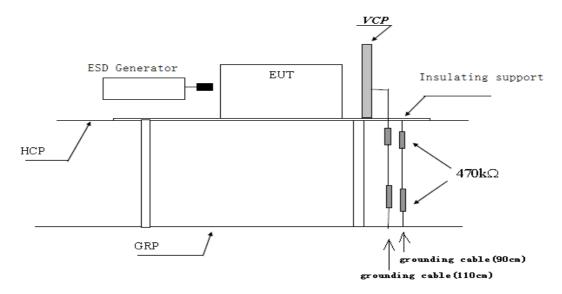
Measurement Uncertainties:  $\pm$  4.8dB. The measured result is above the specification limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance is more probable than noncompliance with the specification limit.



# 8 ELECTROSTATIC DISCHARGE

# 8.1 TEST METHOD AND SUMMARY

| Basic Standard :              |                 | EN 61000-4-2                                             |  |  |
|-------------------------------|-----------------|----------------------------------------------------------|--|--|
| Port :                        |                 | Enclosure                                                |  |  |
| Required Performar            | nce Criterion : | В                                                        |  |  |
|                               |                 | ± 2.0, ± 4.0, ±8.0 kV (Air Discharge)                    |  |  |
| Level :                       |                 | ± 2.0, ±4.0 kV (Contact Discharge)                       |  |  |
|                               |                 | ± 2.0, ±4.0 kV (Indirect Contact Discharge)              |  |  |
| No. of Discharge(s)           | :               | Minimum of 10 Discharges per Each Polarity               |  |  |
| Time Between Each Discharge : |                 | 1 second                                                 |  |  |
| Test Mode :                   |                 | Stand-by, Link & Running (Motor)                         |  |  |
| Test Setup :                  |                 | Table-top                                                |  |  |
| Temperature :                 |                 | 24.0°C                                                   |  |  |
| Relative Humidity :           |                 | 55.1%                                                    |  |  |
| Test of Post-installation :   |                 | N/A                                                      |  |  |
| Test Point                    | Air Diagharas   | All insulated enclosure and seams                        |  |  |
| Air Discharge:                |                 | All the points where contact discharge cannot be applied |  |  |
| Contact:                      |                 | All conductive surfaces of the EUT                       |  |  |
| HCP:                          |                 | All sides of the EUT                                     |  |  |
| VCP:                          |                 | Four faces of the EUT                                    |  |  |


# 8.2 TEST EQUIPMENT

| Equipment No. | Equipment     | Manufacturer | Model No. | Cal. Date   | Due Date    |
|---------------|---------------|--------------|-----------|-------------|-------------|
| SZ189-01      | ESD Simulator | KIKUSUI      | KES4021   | 11-Nov-2020 | 11-Nov-2021 |

Version: 01 November 2017 Page 25 of 34 ETSI EN300440\_c



# 8.3 TEST SETUP



Test set-up of electrostatic discharge



# 8.4 TEST RESULT

# 8.4.1 TEST RESULT

| Discharge Type         | Applied Voltage | Result<br>(Pursuant to ETSI EN 301 489-3 Criterion B) |
|------------------------|-----------------|-------------------------------------------------------|
| Contact Discharge      | ± 2.0, ± 4kV    | Complied                                              |
| Air Discharge          | ± 2, ± 4, ± 8kV | Complied                                              |
| Indirect HCP Discharge | ± 2.0, ± 4kV    | Complied                                              |
| Indirect VCP Discharge | ± 2.0, ± 4kV    | Complied                                              |

# 8.4.2 ADDITIONAL RESULT INFORMATION

No observable change.

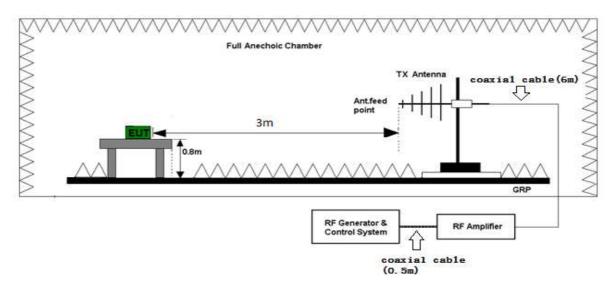


# 9 RADIO FREQUENCY ELECTROMAGNETIC FIELD

# 9.1 TEST METHOD AND SUMMARY

| Basic Standard :                 | EN 61000-4-3                     |
|----------------------------------|----------------------------------|
| Port :                           | Enclosure                        |
| Required Performance Criterion : | Α                                |
| Level:                           | 3.0 V/m (rms)                    |
| Test Modulation :                | 1kHz, 80% AM                     |
| Frequency:                       | 80 MHz to 6000 MHz               |
| Dwell Time :                     | 1s                               |
| Frequency Step :                 | 10%                              |
| Temperature :                    | 25.4°C                           |
| Relative Humidity :              | 47.9%                            |
| Test Facility :                  | Full Anechoic Chamber            |
| Antenna Polarization :           | Horizontal and Vertical          |
| Type of Antenna:                 | Broadband Antenna                |
| Test Distance :                  | 3m                               |
| Test Mode :                      | Stand-by, Link & Running (Motor) |
| Test Setup :                     | Table-top                        |

# 9.2 TEST EQUIPMENT


| Equipment No. | Equipment                             | Manufacturer    | Model No.    | Cal. Date   | Due Date    |
|---------------|---------------------------------------|-----------------|--------------|-------------|-------------|
| SZ061-03      | BiConiLog<br>Antenna                  | ETS             | 3142C        | 24-May-2019 | 24-May-2021 |
| SZ180-01      | Signal<br>Generator                   | R&S             | SML03        | 27-May-2020 | 27-May-2021 |
| SZ181-01      | Amplifier                             | PRANA           | AP32 MT215   | 5-Jan-2021  | 5-Jan-2022  |
| SZ181-06      | Power<br>Amplifier                    | INTERTEK HK     | ZKL-1R5+     | 27-May-2020 | 27-May-2021 |
| SZ182-01      | RF Power<br>Meter                     | BOONTON         | 4232A        | 5-Jan-2021  | 5-Jan-2022  |
| SZ188-02      | Anechoic<br>Chamber                   | ETS             | RFD-F/A-100  | 15-Dec-2018 | 15-Dec-2021 |
| SZ190-07      | RF Amplifier                          | Milmega         | AS0860-75/45 | 5-Jan-2021  | 5-Jan-2022  |
| SZ180-15      | Signal<br>Generator                   | R&S             | SMB100A      | 27-Oct-2020 | 27-Oct-2021 |
| SZ061-16      | Stacked<br>double log<br>Per. Antenna | SCHWARZBE<br>CK | STLP 9149    | 9-Nov-2019  | 9-Nov-2021  |

<sup>\*</sup> The Equipment would be verified together with the test system before testing.

Version: 01 November 2017 Page 28 of 34 ETSI EN300440\_c



# 9.3 TEST SETUP



Test set-up of Immunity to Radiated Electric Fields

# 9.4 TEST RESULT

# 9.4.1 TEST RESULT

| Frequency<br>(MHz) | Exposed Side | Result (Pursuant to ETSI EN 301 489-3 Criterion A) |
|--------------------|--------------|----------------------------------------------------|
| 80 to 6000         | Front        | Complied                                           |
| 80 to 6000         | Left         | Complied                                           |
| 80 to 6000         | Rear         | Complied                                           |
| 80 to 6000         | Right        | Complied                                           |

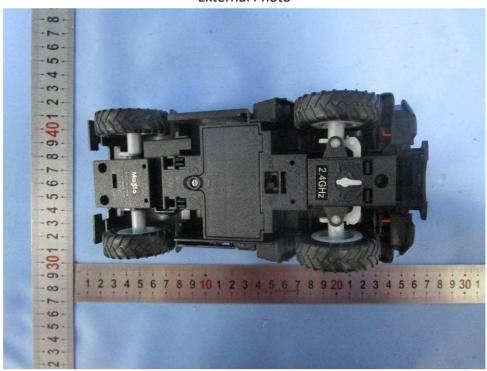
# 8.4.2 ADDITIONAL RESULT INFORMATION

No observable change.

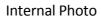


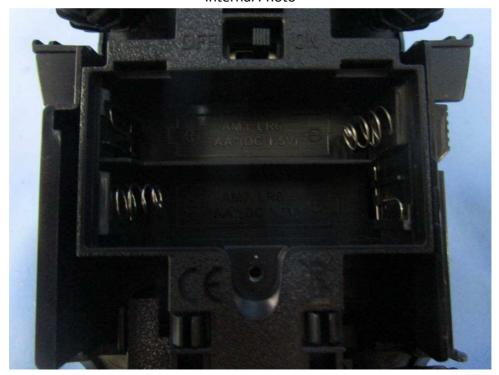
**EXHIBIT 4** 

**PHOTOS OF EUT** 

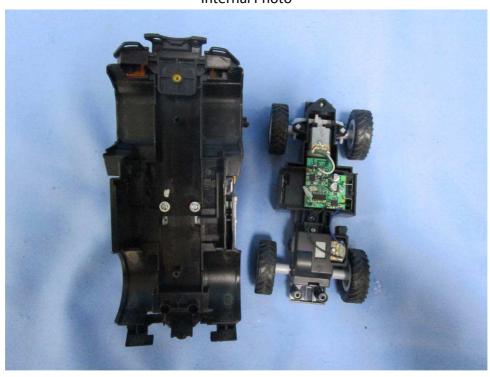



# 10. EUT PHOTOS



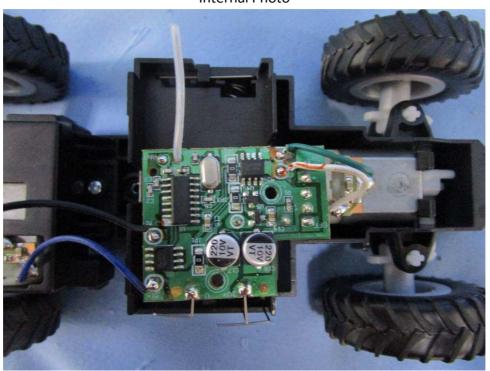




**External Photo** 







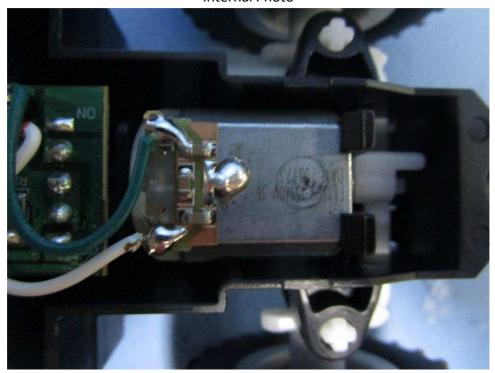




Internal Photo

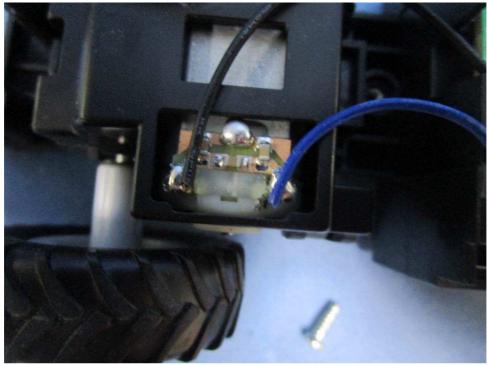









Internal Photo










Internal Photo



--END --